COMMENTARY

NEUROPHARMACOLOGICAL MECHANISMS OF CAPSAICIN AND RELATED SUBSTANCES

ANDY DRAY*

Sandoz Institute for Medical Research, London WC1E 6BN, U.K.

Capsaicin is an important molecule (Fig. 1) because of its highly selective effects of unmyelinated C- and poorly myelinated A δ -mammalian primary sensory neurons, particularly warm thermoceptors and polymodal nociceptors [1-5]. Capsaicin-sensitive neurons exhibit several important features. During inflammation, their responsiveness to exogenous stimuli changes such that some neurons become hypersensitive to physiological stimuli, while others, normally quiescent and unresponsive, now become responsive to external stimulation and behave as nociceptors [1]. In humans, local applications of capsaicin to the skin or mucous membranes produce a transient burning pain and hyperalgesia [5, 6] by activation and sensitization of primary afferent Cand probably A δ -neurons. Capsaicin also induces a longer lasting secondary hyperalgesia (an increase in sensitivity some distance away from the injected site). This phenomenon, however, is now thought to be due to an increase in neuronal excitability in the spinal cord [7]. Paradoxically, however, capsaicin can also produce an inactivation of nociceptive afferent fibres, and it is this property which may be exploited to produce future analysesic drugs.

Capsaicin-sensitive neurons release glutamate and a number of neuropeptides such as substance P, neurokinin A, somatostatin, and calcitonin genepeptide (CGRP)† as central neurorelated transmitters of nociceptive signals. These transmitter substances are also involved in producing long-term alterations of spinal excitability, associated with increased spinal reflex activity. These mechanisms may be involved in the development of secondary hyperalgesia, as mentioned earlier, and perhaps in the production of neuropathic pain processes such as allodynia whereby stimulation of low threshold afferent A β -fibres can be perceived as a noxious stimulus [7, 8]. Capsaicin-sensitive afferent fibres are also able to change their responsiveness to exogenous stimuli, particularly following the pathophysiological effects of inflammatory mediators (e.g. kinins, prostanoids). Indeed, afferent C-fibres are capable of releasing neuropeptides (substance P, CGRP) at their peripheral endings. Once released these peptides exert a number of effects. They stimulate secretions (gastrointestinal, salivary), contract smooth muscle, dilate microvessels and increase microvascular permeability allowing the leakage of plasma proteins from venules [2, 3]. This latter effect, and the neuropeptide-induced mast cell degranulation, are related to the pathophysiological mechanisms of neurogenic inflammation.

Presently there is a good deal of debate on the physiological classification of capsaicin-sensitive neurons. It is clear that this type of neuron exhibits afferent (nociceptor) activity as well as efferent properties but it is unclear how to classify neurons that become responsive to physiological stimuli only under the influence of inflammatory products or exogenous irritants. Indeed capsaicin-sensitive neurons appear to encompass the properties of "multifunctional neurons". This topic, however, requires a discussion which is outside the scope of

OLVANIL

Fig. 1. Structures of capsaicin and the analgesic/antiinflammatory analogue, olvanil. The third structure shown is the selective, competitive capsaicin antagonist, capsazepine.

^{*} Correspondence: Dr. Andy Dray, Sandoz Institute for Medical Research, 5 Gower Place, London WC1E 6BN, U.K. Tel. (071) 387-4445; FAX (071) 387-4116.

[†] Abbreviations: CGRP, calcitonin gene-related peptide; and NGF, nerve growth factor.

612 A. Dray

the present commentary. In this article the properties of capsaicin will be reviewed with the aim of explaining the various neuropharmacological and functional changes that it produces.

The capsaicin receptor and ion channel

Detailed studies of capsaicin-induced activation of nociceptive neurons have been made using cultured sensory neurons and fibres in vitro [9, 10]. These studies have shown that capsaicin induces a depolarization, during which there is an increase in membrane permeability to cations, particularly to calcium and sodium ions [9, 11, 12]. The capsaicin-induced accumulation of calcium or the flux of rubidium and guanidinium ions has been exploited to quantify the effects of capsaicin-like molecules [9].

Capsaicin-induced activation of sensory neurons is likely to be produced by an interaction with a specific membrane receptor. Evidence for a capsaicin receptor has been provided from earlier studies using a variety of capsaicin derivatives [13-15] and a capsaicin-like photoaffinity probe [16]. Identification of a capsaicin binding site, using radiolabeled capsaicin, has not been successful. However, specific, saturable, capsaicin displaceable binding has been shown using the ultrapotent capsaicin analogue resiniferatoxin as a binding ligand [17]. This naturally occurring irritant activates sensory neurons and nociceptors in a manner identical to that of capsaicin [18, 19]. In addition, systemically administered resiniferatoxin shows potent antinociceptive and anti-inflammatory activity [18, 20]. More recently, evidence confirming the existence of a capsaicin receptor, localized to mammalian sensory neurons, has been obtained using a novel competitive antagonist, capsazepine (Fig. 1). Capsazepine has been shown to be a highly selective antagonist of capsaicin-induced activation of nociceptors both in vitro and in vivo [21, 22].

The existence of a capsaicin receptor has suggested that there may be an endogenous ligand for it. A possible candidate has been low pH. This view was supported by the striking similarity between the activation of C-neurons by capsaicin and that produced by low pH [23]. However, it is unlikely that the effect of pH is susceptible to the selective capsaicin antagonist capsazepine. Further studies have revealed specific capsaicin binding proteins on sensory neurons but a capsaicin antiserum was unable to detect endogenous capsaicin-like activity in normal or inflammed tissues [24].

The membrane ion channel activated by capsaicin is unique and is insensitive to conventional calcium and sodium ion-channel blockers such as the dihydropyridines, ω -conotoxin and tetrodotoxin, respectively [9]. In keeping with this, capsaicin-induced activation of peripheral nociceptors was unaffected by calcium channel blocking agents [10]. The capsaicin-activated ion channel may be further distinguished by the polyvalent cationic dye ruthenium red. Thus, the capsaicin-induced accumulation of calcium by sensory neurons is prevented by ruthenium red [9], probably resulting from a block of the capsaicin-activated ion channel [25]. Ruthenium red also appears to be highly selective

since it attenuates the activation of nociceptors and the release of sensory neuropeptide by capsaicin but not by other stimulants [25–27]. Capsaicin also produces an activation of a number of biochemical systems. It increases cellular cGMP, diacylglycerol, and inositol trisphosphate turnover, and stimulates arachidonic acid release [9, 28]. However, these events are secondary to calcium entry and do not play a role in the initial activation of sensory neurons by capsaicin.

The excitability of sensory neurons and their sensitivity to capsaicin are increased by nerve growth factor(s) [29]. The physiological relationship of NGF and sensory neurons is not well understood though the production of NGF is increased in inflamed tissues [30] and NGF pretreatment induces hyperalgesia [31] as well as long-term changes in phenotypic expression in sensory neurons. The latter results in the increased synthesis of a number of sensory neuropeptides [29, 32] including substance P and CGRP. In turn, the production of NGF from fibroblasts and Schwann cells [33] is stimulated by substance P-induced release of cytokines such as interleukin-1 [33, 34].

Another functionally important aspect of capsaicininduced activation of sensory neurons is the release of neurochemicals from peripheral or central nerve terminals [2, 3]. Under physiological conditions the release mechanisms are coupled to voltage-activated calcium channels. However, capsaicin-evoked release is due almost entirely to calcium entry via capsaicin-activated cation channels [2, 3, 35]. It is significant, therefore, that the entry of calcium via these channels subsequently inhibits the voltagedependent calcium currents [12] with the resultant attenuation of depolarization-induced (via nerve stimulation) neurotransmitter release. The inhibition of release of neuropeptides or other neurotransmitters from central and peripheral terminals is a mechanistic explanation for the analgesic and anti-inflammatory effect of capcaicin (see later). This effect of capsaicin is unlikely to be due to a rapidly reversible process such as calcium-dependent inactivation of membrane calcium permeability. Rather, the longer lasting effect may be due to another calcium-dependent process involving proteolytic inactivation of calcium channel protein. A similar mechanism may contribute to capsaicininduced desensitization [12, 35] (see later).

Capsaicin-induced "desensitization"

Several processes are involved in capsaicininduced desensitization which is seen as a loss of effectiveness following repeated exposure of tissues to capsaicin. In sensory neurons at least two mechanisms, operating with different time courses and at different membrane potentials, have been identified recently [36]. One process depends on the influx of calcium ions, while another, slower mechanism, appears to be independent of calcium. Nociceptors also show several types of desensitization to capsaicin. Low concentrations of capsaicin induce a loss of sensitivity to capsaicin without impairing responses to other noxious stimuli [10]. Moreover, selective desensitization to capsaicin occurs in the absence of extracellular calcium or even overt nociceptor activation in the absence of sodium ions.

It is possible that this form of desensitization may involve affinity changes in the capsaicin receptor or an uncoupling of the receptor—ion channel complex. This selective desensitization to capsaicin is unlikely to account for the acute antinociceptive effects of capsaicin.

Capsaicin also produces a prolonged block of conduction in some C-fibres [5, 10, 11, 37] and a loss of chemical sensitivity due to an impairment of signal transduction at the afferent nerve terminal [10]. The extent of this depends on the exact concentration and contact time with capsaicin. This would account for the non-specific desensitization in which sensitivity to capsaicin is lost and that to other chemical and physical noxious stimuli is attenuated. The exact mechanisms are unclear by there may be a combination of calcium-independent [37] as well as calcium-coupled inactivation processes. Osmotic changes, due to the accumulation of intracellular ions [9, 11], may also contribute. Such mechanisms may also account for the ultrastructural changes and loss of function in peptide containing afferent nerve endings. This has been suggested as an explanation for one form of desensitization, especially when peptide release was used as a measure of capsaicininduced nerve activation [38]. It is possible that this type of "desensitization" of peripheral nociceptors may be involved in the reversible reduction of neurogenic inflammation produced by repeated topical administration of capsaicin to the skin [39].

Finally, a selective sensory neurotoxicity [1, 9] may be brought about by exposure to high concentrations of capsaicin. As before several mechanisms have been implicated. Osmotic changes [11, 19], accompanied by inhibition of axoplasmic transport [40], lead to impaired functioning of intracellular organelles. Cell degeneration and lysis may be brought about by an accumulation of sodium chloride while enzyme-related cellular damage may be triggered by the rise in intracellular calcium [11, 19]. However, neurotoxic actions are unlikely to underlie either the acute antinociceptive or anti-inflammatory actions of capsaicin. Both of these effects last a few hours, are completely reversible, and show the characteristic functional changes without evidence of neurodegeneration.

Capsaicin-induced antinociception

Systemic capsaicin produces an acute antinociceptive effect in a number of conventional tests [15, 41, 42]. The mechanism of antinociception is still unclear, but the phenomenon is reversible, it does not involve a neurotoxic effect, it is clearly unrelated to depletion of neuropeptides from afferent nerves [43], and it does not appear to involve a peripheral mechanism of action. Thus, studies using in vitro models have suggested that relatively high concentrations of capsaicin are required to inactive peripheral nociceptors [10]. Such concentrations are not likely to be achieved in peripheral tissue following an acute antinociceptive dose of capsaicin [44]. Indeed, antinociception appears to be due to an effect on capsaicin receptors localized on the central terminals of C-neurons in the spinal cord [22, 45, 46].

In keeping with this, small systemic doses of capsaicin, previously found to be effective in

behavioral studies, reversibly depressed C-fibre evoked firing of doral horn neurons [44, 45]. In addition, C-fibre evoked firing was depressed by spinal intrathecal administrations of capsaicin in amounts found to be present in the spinal cord following systemic administration. Furthermore, systemic administration of the antagonist capsazepine reduced the antinociceptive effect of systemic capsaicin. But most significantly, intrathecally administered capsazepine attenuated the anti-nociceptive effect of systemic capsaicin [22]. This would strongly indicate penetration of capsaicin into the spinal cord and an interaction with specific receptors on primary afferent nerve terminals. As indicated earlier, antinociception may result from capsaicin-induced activation of nerve terminals followed by the inactivation of voltage gated calcium channels. The operation of these channels is necessary for continued transmitter release in the spinal cord following depolarizing stimuli to peripheral nociceptors. This hypothesis is further supported by the findings that spinal administration of capsaicin inhibits neuropeptide release from sensory nerve terminals in the spinal cord [45]. Interestingly, acute systemic or local administration of the antagonist capsazepine does not alter the activity of nociceptors or their responses to noxious stimuli [22]. This would suggest that a capsaicin-like molecule is not involved in conditions of acute pain.

Though capsaicin produces analgesia and antiinflammatory activity following systemic administration, these effects have only been demonstrated in laboratory animals. However, capsaicin has been used by local administration to treat a number of painful clinical conditions [6] including cluster headache, post-mastectomy pain, reflex sympathetic dystrophy pain, the pain of post-herpetic neuralgia, diabetic neuropathy and rheumatoid arthritis [47]. A major drawback to the therapeutic usage of capsaicin has been the initial pain and discomfort on first administration. This can be made more tolerable with local anaesthesia. However, analogues of capsaicin have now been developed in which this algogenic property has been minimized. For example, in laboratory tests, olvanil (Fig. 1) has in vivo analgesic potency similar to that of capsaicin [41, 45] but lacks the stimulatory effects of capsaicin both in vitro and in vivo [45]. Mechanistic studies suggest that like capsaicin the antinociception produced by systemic olvanil may be due to blockade of spinal nociceptive neurotransmission following the inhibition of sensory neuropeptide release from primary afferent nerve terminals [45]. A similar mechanism of nerve terminal inactivation can be postulated for olvanil as that suggested for capsaicin. Thus, even though olvanil may produce a slow depolarization, this is insufficient to initiate a high degree of nociceptor activation. But nonetheless, an intracellular accumulation of calcium results in the inactivation of voltage gated calcium channels. The separation between analgesic efficacy and the algogenic action of capsaicin-like compounds is regarded favourably for the development of a clinically useful analgesic with a novel mechanism of action.

614 A. Dray

Summary

Capsaicin activates poorly myelinated primary afferent neurons, many of which are polymodal nociceptors. Activation is accompanied by membrane depolarization and the opening of a unique, cationselective, ion channel which can be blocked by the polyvalent dye ruthenium red. The capsaicin-induced activation is mimicked by resiniferatoxin, a potent analogue, and by low pH. Activation is mediated by a specific membrane receptor which can be selectively and competitively antagonized by capsazepine. Repetitive administration of capsaicin produces a desensitization and an inactivation of sensory neurons. Several mechanisms are involved including receptor inactivation, block of voltage activated calcium channels, intracellular accumulation of ions leading to osmotic changes, and activation of proteolytic enzyme processes. Systemic and topical capsaicin produces a reversible antinociceptive and anti-inflammatory action after an initial undesirable algesic effect. Capsaicin analogues, such as olvanil, have similar properties with minimal initial algesic activity. Antinociception produced by capsaicin does not involve neurotoxicity, sensory neuropeptide depletion or activity at peripheral receptors; rather, systemic capsaicin produces antinociception by activating capsaicin receptors on afferent nerve terminals in the spinal cord. Spinal neurotransmission is blocked by a prolonged inactivation of sensory neurotransmitter release. However, local or topical applications of capsaicin block C-fibre conduction and inactive neuropeptide release from peripheral nerve endings. These mechanisms account for localized antinociception and the reduction of neurogenic inflammation, respectively.

REFERENCES

- Holzer P, Capsaicin: Cellular targets, mechanisms of action, and selectivity for thin sensory neurons. Pharmacol Rev 43: 143-201, 1991.
- Holzer P, Local effect or functions of capsaicin-sensitive sensory nerve endings: Involvement of tachykinins, calcitonin gene-related peptide and other neuropeptides. Neuroscience 24: 739-768, 1988.
- Maggi CA and Meli A, Sensory-effector function of capsaicin-sensitive nerves. Gen Pharmacol 19: 1-43, 1988.
- Maggi CA, Capsaicin and primary afferent neurons: From basic science to human therapy? J Auton Nerv Syst 33: 1-14, 1991.
- Lynn B, Capsaicin: Action on nociceptive C-fibres and therapeutic potential. *Pain* 41: 61-69, 1990.
- Carter RB, Topical capsaicin in the treatment of cutaneous disorders. Drug Dev Res 22: 109-123, 1991.
- LaMotte RH, Shain D, Simone DA and Tsai E-F, Neurogenic hyperalgesia: Psychophysical studies of underlying mechanisms. J Neurophysiol 66: 190-211, 1991
- Rang HP, Bevan SJ and Dray A, Chemical activation of nociceptive peripheral neurones. Br Med Bull 47: 534-548, 1991.
- Wood JN, Winter J, James IF, Rang HP, Yeats J and Bevan S, Capsaicin-induced ion fluxes in dorsal root ganglion cells in culture. J Neurosci 8: 3208-3220, 1988.
- Dray A, Bettaney J and Forster P, Action of capsaicin on peripheral nociceptors of the neonatal rat spinal cord-tail in vitro: Dependence of extracellular ions and

- independence of second messengers. Br J Pharmacol 101: 727-733, 1990.
- Marsh SJ, Stansfeld CE, Brown DA, Davey R and McCarthy D, The mechanism of action of capsaicin on sensory C-type neurons and their axons in vitro. Neuroscience 23: 275-289, 1987.
- 12. Docherty RJ, Robertson B and Bevan S, Capsaicin causes prolonged inhibition of voltage-activated calcium currents in adult rat dorsal root ganglion neurons in culture. *Neuroscience* 40: 513-521, 1991.
- Szolcsányi J and Jancsó-Gábor A, Sensory effects of capsaicin congeners. I. Relationship between chemical structure and pain-producing potency of pungent agents. Arzneimittelforschung Drug Res 25: 1877-1881, 1975.
- Szolcsányi J and Jancsó-Gábor A, Sensory effects of capsaicin congeners. Part II: Importance of chemical structure and pungency in desensitizing activity of capsaicin-type compounds Arzneimittelforschung Drug Res 26: 33-37, 1976.
- Hayes AG, Oxford A, Reynolds M, Skingle AH, Smithe C and Tyers MB, The effects of a series of capsaicin analogues on nociception and body temperature. *Life Sci* 34: 1241-1248, 1984.
- 16. James IF, Walpole CSJ, Hixon J, Wood JN and Wrigglesworth R, Long-lasting agonist activity produced by a capsaicin-like photoaffinity probe. *Mol Pharmacol* 33: 643-649, 1988.
- Szallasi A and Blumberg PM, Specific binding of resiniferatoxin, an ultrapotent capsaicin analog, by dorsal root ganglion membranes. *Brain Res* 524: 106– 111, 1990.
- Szallasi A and Blumberg PM, Resiniferatoxin, a phorbol-related diterpene, acts as an ultrapotent analog of capsaicin, the irritable constituent of red pepper. Neuroscience 30: 515-520, 1989.
- Winter J, Dray A, Wood JN, Yeats JC and Bevan S, Cellular mechanism of action of resiniferatoxin: A potent sensory neuron excitotoxin. *Brain Res* 520: 131– 140, 1990.
- Campbell EA, Dray A, Perkins MN and Shaw W, Analgesic and anti-inflammatory activity of resiniferatoxin in the mouse and rat: Comparison with capsaicin. J Physiol (Lond) 418: 149P, 1989.
- 21. Bevan S, Hothi S, Hughes GA, James IF, Rang HP, Shah K, Walpole CSJ and Yeats JC, The development of a capsaicin antagonist for the sensory neuron excitant. *Br J Pharmacol* 102: 77P, 1991.
- Dickenson AH and Dray A, Selective antagonism of capsaicin by capsazepine: Evidence for a spinal receptor site in capsaicin-induced antinociception. Br J Pharmacol 104: 1045-1049, 1991.
- Bevan S and Yeats J, Protons activate a cation conductance in a sub-population of rat dorsal root ganglion neurons. J Physiol (Lond) 433: 145-161, 1991.
- Wood JN, Walpole C, James IF, Dray A and Coote P, Immunochemical detection of a photoaffinitylabelled capsaicin-binding protein from sensory neurons. FEBS Lett 269: 381-385, 1990.
- 25. Dray A, Forbes CA and Burgess GM, Ruthenium red blocks the capsaicin-induced increase in intracellular calcium and activation of membrane currents in sensory neurones, as well as the activation of peripheral nociceptors in vitro. Neurosci Lett 110: 52-59, 1990.
- 26. Maggi CA, Patacchini R, Santicioli P, Giuliani S, Del Bianco E, Geppetti P and Meli A, The 'efferent' function of capsaicin-sensitive nerves: Rheuthenium red discriminates between different mechanisms of activation. Eur J Pharmacol 170: 167-177, 1989.
- Amann R, Donnerer J and Lembeck F, Activation of primary afferent neurons by thermal stimulation. Influence of ruthenium red. Naunyn Schmiedeberg Arch Pharmacol 341: 108-113, 1991.

- Wood JN, Coote PR, Minhas A, Mullaney I, McNeill M and Burgess GM, Capsaicin-induced ion fluxes increase cyclic GMP but not cyclic AMP levels in rat sensory neurones in culture. J Neurochem 53: 1203– 1211, 1989.
- 29. Winter J, Forbes CA, Sternberg J and Lindsay JM, Nerve growth factor (NGF) regulates adult rat cultured dorsal root ganglion neuron responses to the excitotoxin capsaicin. *Neuron* 1: 973-981, 1988.
- Westkamp G and Otten U, An enzyme-linked immunoassay for nerve growth factor (NGF): A tool for studying regulatory factors in NGF production in brain and peripheral tissues. J Neurochem 48: 1779– 1786, 1987.
- 31. Ritter AM, Lewin GR and Mendell LM, Regulation of myelinated nociceptor in the neonatal and adult rat. *Brain Res Bull*, in press.
- Lindsay RM, Lockett C, Sternberg J and Winter J, Neuropeptide expression in cultures of adult rat sensory neurons: Modulation of substance P and calcitonin gene-related peptide levels. *Neuroscience* 33: 53-65, 1989.
- Lindholm D, Neumann R, Meyer M and Thoenen H, Interleukin-1 regulates synthesis of nerve growth factor in non-neuronal cells of rat sciatic nerve. *Nature* 330; 658-659, 1987.
- Hartung HP and Toyaka K, Activation of macrophages by substance P: Induction of oxidative burst and thromboxane release. Eur J Pharmacol 89: 301–305, 1983.
- 35. Dray A, Hankins MW and Yeats JC, Desensitization and capsaicin-induced release of substance P-like immunoreactivity from guinea-pig ureter *in vitro Neuroscience* 31: 479–483, 1989.
- 36. Yeats JC, Docherty RJ and Bevan S, Calcium-dependent and independent desensitization of caps-aicin-evoked responses in voltage-clamped adult rat dorsal root ganglion (DRG) neurones in culture. J Physiol (Lond) 446 309P, 1991.

- 37. Waddell PJ and Lawson SL, The C-fibre conduction block caused by capsaicin on rat vagus nerve *in vitro*. *Pain* 39: 237-242, 1989.
- 38. Kiraly E, Jansco G and Hajos M, Possible morphological correlates of capsaicin desensitization. *Brain Res* **540**: 279–282, 1991.
- 39. McMahon SB, Lewin G and Bloom SR, The consequences of long-term topical capsaicin application in the rat. *Pain* 44: 301-310, 1991.
- Gamse R, Petsche U, Lembeck F and Jansco G, Capsaicin applied to peripheral nerve inhibits the axoplasmic transport of substance P and somatostatin. Brain Res 239: 447-462, 1982.
- 41. Campbell EA, Dray A and Perkins MN, Comparison of capsaicin and olvanil as antinociceptive agents in vivo and in vitro. Br J Pharmacol 98: 907P, 1989.
- Hayes AG and Tyers MB, Effects of capsaicin on nociceptive heat, pressure and chemical thresholds and on substance P levels in the rat. *Brain Res* 189: 561– 564, 1980.
- Bittner MA and Lahann TR, Biphasic time-course of capsaicin-induced substance P depletion: Failure to correlate with thermal analgesia in the rat. *Brain Res* 322: 305-309, 1984.
- Dickenson AH, Ashwood N, Sullivan AF, James I and Dray A, Antinociception produced by capsaicin: Spinal or peripheral mechanism? Eur J Pharmacol 187: 225– 233, 1990.
- 45. Dickenson A, Hughes C, Rueff A and Dray A, A spinal mechanism of action is involved in the antinociception produced by the capsaich analogue olvanil. *Pain* 43: 353–362, 1990.
- 46. Urban L and Dray A, Capsazepine, a novel capsaicin antagonist, selectively antagonises the effect of capsaicin in the mouse spinal cord in vitro. Neurosci Lett 134: 9-11, 1991.
- Deal CL, Schnitzer TJ, Lipstein E, Seibold JR, Stevens RM, Levy MD, Alberts D and Renold F, Treatment of arthritis with topical capsaicin: A double blind trial. Clin Ther 13: 383-395, 1991.